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Abstract—The proliferation of healthcare IoT devices and
the resulting rich healthcare data sprout new possibilities for
intelligent healthcare applications. Patients in intensive care
units (ICUs) rely on various networked gadgets to continuously
monitor their health and manage critical situations. Among the
common therapeutic interventions in ICUs, invasive mechanical
ventilation and injecting sedatives during ventilation play crucial
roles in maintaining respiratory function and enhancing patient
care. While existing therapeutic interventions largely depend
on experience and intuition, we propose a federated inverse
reinforcement learning framework, termed FERRY, which auto-
matically and intelligently learns optimal therapeutic intervention
policies across networked ICUs while keeping raw data local.
Specifically, our federated approach overcomes limitations in
medical data privacy and facilitates collaboration; our proposed
inverse reinforcement learning framework learns the variational
posterior distribution from historical trajectories to handle the
unknown reward. Additionally, we enhance our framework
with distributionally robust optimization to ensure worst-case
performance and adaptively filter out noisy data through joint
loss learning. Extensive experiments on the real-world dataset
demonstrate that FERRY improves the overall ventilation and
sedation decision-making accuracy by 36.75% compared to other
state-of-the-art baselines.

Index Terms—Federated learning, Inverse reinforcement learn-
ing, Distributionally robust optimization, Noisy label

I. INTRODUCTION

The rise of IoT devices has led to an unprecedented increase
in healthcare data in recent years. A global survey by Dell
Technologies indicates that data in healthcare industries has
surged by 878% over the past two years [1]. Intensive care
units (ICUs) are crucial departments within hospitals, equipped
with advanced devices that continuously monitor patients’ vital
signs and generate physiological data. This data-rich medical
landscape creates an ideal environment for the development
of automated and intelligent decision support tools, leveraging
artificial intelligence and data analytics to uncover complex re-
lationships within large datasets and enhance clinical decisions
and treatment protocols, as illustrated in Fig. 1.

In ICUs, therapeutic interventions — such as invasive
mechanical ventilation, thoracentesis, and sedative adminis-
tration — are critical for helping patients survive acute life-
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Fig. 1. The illustration of intelligent therapeutic interventions

threatening conditions. However, the timing and dosage of
these interventions can greatly influence patient outcomes
[2]. For instance, premature extubation during mechanical
ventilation may hinder recovery, while prolonged ventilation
can elevate the risk of infection [3]. Additionally, sedatives are
frequently administered to ventilated patients to alleviate pain
and maintain physiological stability. However, in traditional
ICUs, physicians rely on their experience to interpret complex
and diverse data, leading to variability in the effectiveness of
these interventions [4]. This reliance on individual intuition
and experience not only risks suboptimal treatment outcomes
but also diminishes overall care quality [5]. To tackle these
challenges, there is a growing interest in leveraging machine
learning techniques to enhance clinical decision-making and
improve patient outcomes based on data collected from med-
ical devices.

Reinforcement learning (RL) has recently emerged as a
powerful tool for assisting physicians in clinical decision-
making due to its high adaptability to complex dynamic envi-
ronments and strong capability to process uncertain informa-
tion [6]. By retrieving essential information from clinical data,
RL could provide accurate and personalized treatment policies
that improve patient outcomes [7]. Notably, several studies



have highlighted the effectiveness of RL in this domain. For
instance, Komorowski et al. [8] employ a model-based policy
iteration algorithm to develop treatment decisions for patients
with sepsis, achieving better outcomes than those made by
human clinicians. Similarly, Raghu et al. [9] utilize the Double
Deep Q Network to learn clinically interpretable treatment
policies for sepsis within a continuous state space. Prasad et
al. [10] focus on developing mechanical ventilation weaning
protocols using the Fitted Q Iteration algorithm, demonstrating
a promising reduction in reintubation rates. Additionally, Yu
et al. [11] apply bayesian inverse reinforcement learning
(IRL) to optimize mechanical ventilation policies, resulting in
personalized reward functions that not only reduce ventilation-
associated lung injuries but also improve overall clinical
outcomes.

Despite offering some benefits, these approaches suffer from
several challenges. First, privacy. Many methods rely on data
from a single hospital due to privacy issues [12], [13], which
can lead to inadequate datasets and, consequently, reduced
model performance. How to fully exploit the scattered data
across different hospitals to train a model without exposing
local hospital data is non-trivial. Second, unknown reward.
The reward functions in these schemes are designed solely
based on the physicians’ clinical experience, as quantifying
complex physiological changes into a logical reward system
proves difficult. This resilience can lead to subjective and
inconsistent rewards, introducing bias into the model [7]. How
to develop policies that are close to physicians from existing
expert trajectories is challenging. Last but not least, noisy
data. These schemes often overlook the impact of data noise,
which can stem from incorrect inputs, inconsistent naming
conventions, and coding errors within clinical datasets [14].
How to mitigate the impact of data noise on model training
and generate a functional model is not easy.

To overcome the aforementioned issues, we propose a novel
framework called FERRY, which seamlessly integrates feder-
ated learning (FL) and IRL. Specifically, FERRY leverages FL
to overcome medical data privacy limitations and enable col-
laboration across hospitals. The integration of IRL addresses
the challenge of formulating reward functions by learning
from expert demonstrations. Furthermore, FERRY incorpo-
rates distributionally robust optimization (DRO) to mitigate
the negative effects of data heterogeneity and ensure strong
model performance even in worst-case scenarios. However,
naively combining existing IRL approaches with FL struggles
to handle the noisy data, leading to significant performance
degradation. In response, FERRY applies a joint loss learning
to reduce the impact of noisy data, thereby enhancing both ac-
curacy and robustness. The detailed methodology is presented
in Section II.

The main contributions of the paper are summarized as
follows:

• We propose a novel framework to jointly combine IRL
and FL in the ICU domain to solve medical decision-
making problems and apply DRO to ensure that the model

performs well, even under worst-case distribution shifts
within the data.

• We design a pseudo-Siamese paradigm that utilizes both
local and global models to perform joint loss clipping,
specifically targeting clients with noisy data. This ap-
proach effectively mitigates the negative effects of data
noise during model training.

• Extensive experiments on the real-world dataset show
that FERRY achieves central-competitive performance
without aggregating the sensitive raw data.

II. METHODOLOGY

The detailed architecture of FERRY is shown in Fig. 2. The
process starts with the cloud server initializing a global model,
which is distributed to all participating hospitals. Each hospital
then updates this global model using its local clinical data
(i.e., demonstrations) to obtain a local model. For hospitals
dealing with noisy data, the trained local and global models
are processed through a joint loss training approach, producing
an updated local model for the current round. Afterward, each
hospital uploads its updated local model to the cloud server.
The server aggregates these models into a new global model,
which is redistributed to all hospitals for the next training
round. This iterative process continues until the global model
converges. Throughout the training, only model parameters
are exchanged, ensuring that raw clinical data remains local
and patient privacy is preserved. Additionally, employing the
IRL framework handles the design of the reward function,
leading to improved policy model accuracy. Moreover, joint
loss learning helps mitigate the effects of noisy data, further
enhancing the model’s efficiency. The specifics regarding local
update are elaborated in subsection II-A, the joint loss learning
approach is detailed in subsection II-C, and the aggregation
process is introduced in subsection II-D.

A. Local IRL Update

Typically, applying RL to solve clinical decision problems
requires modeling the entire treatment process as a Markov
decision process (MDP), consisting of the tuple (S,A, P,R),
where S is the state space, A is the action space, P is
the transition function, and R is the reward function [15].
However, in our work, we cannot directly inform about the
potential reward or transitions due to the lack of knowledge
about R and P . Fortunately, we have access to treatment
trajectories from expert clinicians, which allows us to infer
R based on their observed behavior. With that in mind, we
define the two remaining elements as follows:

State: st ∈ S denotes the physiological state of the patient
at time t. In designing the state space, we incorporate observed
physiological data to assess the patient’s condition. The state
at time t is a high-dimensional feature vector that includes
essential patient information such as age, weight, and other
key physiological indicators.

Action: at ∈ A represents the action taken by the agent we
trained based on the patient’s state at time t. The action space
is defined separately for ventilator status and sedative dosage.



FERRY

Upload Updated Local ModelDistribute Global Model 

Cloud Server

Local Execution

Local Model

Aggregation

Global Model

Demonstrations

Local Model

𝒓𝝋
Reward

Encoder

𝑸𝜽
Q function 

Decoder

Reward 

Posterior

Local IRL UpdateGlobal Model

Prediction B 

Prediction A

IRL Loss

IRL Loss

Joint Loss

+

+

Joint Loss Learning

Updated Local Model

Local Execution Local Execution Local Execution

……

Fig. 2. The illustration of the proposed framework of FERRY.

Algorithm 1 The procedures of local IRL Update
Input: Clinical demonstrations D, state space S, action space

A, learning rate η, mini-batch size ξ
Output: Parameter of reward distribution ϕ, parameter of

policy function θ
1: Initialise ϕ, θ
2: while not converged do
3: Sample Dmini from D;
4: f(ϕ, θ,D) = E[nξ f(ϕ, θ,Dmini)];
5: (ϕ

′
, θ

′
)←− (ϕ, θ) + η∇ϕ,θf(ϕ, θ,D);

6: ϕ, θ ←− ϕ
′
, θ

′

7: end while
8: Return ϕ, θ

Specifically, we approximate six commonly used sedatives by
mapping them onto a dose scale, which is then discretized into
four distinct levels. The action at ∈ A reflects the treatment
at time step t, where at[0] ∈ [0, 1] indicates whether the
ventilator is on or off, and at[1] ∈ [0, 1, 2, 3] specifies the
sedative dose level. The full action space is as follows:

A =

{[
0
0

] [
0
1

] [
0
2

] [
0
3

] [
1
0

] [
1
1

] [
1
2

] [
1
3

]}
For each time step t, the patient state st and the ac-

tion at taken by the physician together form the tra-
jectory for that time step. The complete set of trajecto-
ries from individual patients constitutes the dataset D ={
(si1, a

i
2, · · · , siτ , aiτ+1)

}m

i=1
, where τ denotes the maximum

time step for the ith patient and m is the total number of
patients. Given that we do not have direct access to the

reward function R or the transition probability P , we adopt
IRL to infer R from the expert trajectories. IRL refers to a
class of algorithms designed to derive an unknown reward
function from demonstrations, enabling the reward function to
be informed by observations of expert behavior [16]–[19].

To achieve this, FERRY defines a surrogate distribution
rϕ(R), parameterized by ϕ, along with a policy network Qθ,
parameterized by θ. Next, FERRY minimizes the Kullback-
Leibler (KL) divergence between rϕ and the posterior distri-
bution p(R|D), forming an optimization objective:

min
ϕ

DKL(rϕ(R))||p(R|D) (1)

Then, FERRY updates both ϕ and θ simultaneously using
stochastic gradient descent (SGD). The optimization continues
until convergence, yielding a reward function that explains
the expert’s demonstrations and a clinical policy optimized
for performance under that reward function. The detailed
procedures are outlined in pseudo-code in Algorithm 1.

B. DRO Design

As previously mentioned, we want to develop a cross-
institutional clinical decision tool within a distributed setting.
However, it is crucial to ensure the reliability of the policies
across multiple hospitals, particularly given the conservative
and rigorous nature of healthcare. Local data stored in different
hospitals can vary significantly in both quality and quantity,
which may impact model performance. To tackle this chal-
lenge, FERRY incorporates DRO, a robust learning paradigm
designed to enhance the model’s resilience by minimizing
worst-case empirical risk. Inspired by previous work [20]



that utilized DRO to address the challenges posed by data
heterogeneity, we combine various local loss functions with
learnable weights and sample clients into the joint learning
process based on their performance in each iteration. Our
optimization objective can be formulated as:

min
θ∈Θ

max
λ∈Λ

=

N∑
i=1

λifi(θ) (2)

where λ ∈ Λ is the global weight for each local loss function;
N is the number of participating clients. A more detailed
description of this approach is provided in Algorithm 2.

Algorithm 2 FERRY (DRO)
Input: N edge servers, total number of iterations K, local

number of steps T , initial model θ0
Output: Final model θK

1: for k = 0 to K do
2: Cloud server samples t

′ ∈ [0, T ] randomly
3: Cloud server broadcasts θ0 and t

′
to all edge servers.

4: for client i ∈ N in parallel do
5: θik, θ

i
t′
←− Joint Loss Training(i, θk, t

′
, j)

6: end for
7: θk=

∑
i∈N ωiθ

i
k

8: θk,t′ =
∑

i∈N ωiθ
i
t′

9: Cloud server broadcast θk,t′ to all clients and receive
fi(θk,t′ , ξ) from N clients

10: Identify noisy clients based on loss and mark as j
11: end for
12: Return θK

C. Joint Loss Learning

After applying DRO, FERRY obtains the softmax layer
outputs P1 and P2 of the global and local models. To enhance
the policy’s robustness against noisy data, FERRY employs
joint loss learning through a pseudo-siamese paradigm, which
integrates both global and local models. This approach si-
multaneously trains two networks with distinct parameters,
enabling the model to leverage shared knowledge across
hospitals while accommodating the unique characteristics of
each hospital’s data [21]. The losses of the two models are
computed jointly, based on the premise that both models
should agree on samples with correct labels while diverging
on incorrect ones. To implement this, the local side establishes
two models with identical structures but different initialization
states: one model is derived from the cloud server, while the
other is based on the local historical model from the previous
training round. FERRY updates both models using a joint loss
function that incorporates the IRL loss from the previous step
along with a co-regularization loss. We define the joint loss
function as follows:

L(ξ) = LIRL(ξ) + LCo−Reg(ξ) (3)

where ξ is the inputs, and LIRL refers to the IRL loss, while
LCo−Reg indicates the contrast loss between the predicted

distributions of the two networks. Co-regularization assists
the model in selecting data with correct labels, as a smaller
co-regularization loss suggests that the two networks have
reached an agreement in their predictions. We quantify the
co-regularization term using the KL divergence between the
prediction distributions as follows:

LCo−Reg = DKL(P1||P2) +DKL(P2||P1) (4)

where P1 and P2 denote the prediction distributions generated
by the two models for the same inputs.

Algorithm 3 The procedures of joint loss learning
Input: Dataset D, global model parameters α, local model β
Output: Final model α′

1: Initialise α, β
2: while not converged do
3: Sample mini-batch ξ from local data set D
4: P1=f(α, ξ); P2=f(β, ξ)
5: Calculate the joint loss using P1, P2

6: L = 1
D

∑
ξ∈D l(ξ) ▷ ξ̃ denotes the small-loss sets

7: Update α′ = α− η∇L, β′ = β − η∇L
8: end while

Intuitively, samples with smaller losses are more likely to be
correctly labeled. Consequently, those samples with relatively
low loss values are prioritized for updating the policy. The
details of the joint loss learning process are outlined in the
Algorithm 3.

D. Aggregation Process

FERRY adopts the aggregating weighted loss functions
approach [22] to implement the aggregation process. This
approach can be mathematically defined as follows:

min
θ

f(θ) =

N∑
i=1

pifi(θ) (5)

where N is the number of clients each with mi training
samples. The total number of samples is M =

∑N
i=1 mi, and

the sample proportion pi = mi/M . After the global model
parameters are consolidated, the server scatters them down to
each hospital again to start a new round of communication.

III. EXPERIMENT

A. Experimental Setup

Data Pre-processing. Experiments are conducted on the
Multi-parameter Intelligent Monitoring in Intensive Care
(MIMIC-III) database [23], [24], which comprises nearly
60,000 ICU inpatient records. To ensure a more objective
evaluation of our weaning policy, FERRY first filters out data
from patients who were ventilated for less than 24 hours or
who failed to be discharged at the end of their admission.
This resulted in 3545 patients’ hourly clinical data. Next,
the remaining dataset is then divided into a training set,
comprising 2,836 patients and a total of 260,559 trajectories,
and a test set, consisting of 709 patients with a total of 67,720
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Fig. 3. Comparison of FERRY performance under different noise levels

trajectories. Additionally, the training set is split into eight
subsets1, which are distributed to eight hospitals, ensuring that
each hospital receives only one subset of data.
Parameter Setting. We set the number of communication
rounds between the cloud server and hospitals to 100, with
3,000 iterations of the local model occurring between every
two communication rounds. The cloud server uses the Adam
optimizer with a learning rate of 10−2, while each hospital
employs a 3-layer MLP network architecture with 64 units
and ELU activation, training the local model with the Adam
optimizer at a learning rate of 10−4. The model parameters are
randomly initialized on the cloud server at the start of training.
Benchmarks. We compare FERRY against the following
methods:

• FQI [10]: A classic offline RL algorithm used to develop
clinical decision-making tools for ventilation and sedative
management on a centralized dataset.

• AVRIL [25]: A scalable and robust IRL algorithm de-
signed to learn reward functions from expert demonstra-
tions on a centralized dataset.

• Fed-NFQI [10], [22]: A method that integrates FL with
neural FQI to continuously optimize policies in a dis-
tributed setting.

• FERRY w/o JL: A variant of FERRY without joint loss
learning, used to assess the contribution of this compo-
nent.

Metrics. We evaluate FERRY with Ventilation Accuracy (V),
Sedative Accuracy (S), Joint Accuracy (V&S), and Rounds to
Target Accuracy (RA). The term Accuracy denotes the ratio
of predictions that match the doctor’s actions to the totals.
As an example, V&S indicates whether the prediction of the
ventilation and sedative is consistent with the doctor’s actions
simultaneously. RA is the number of communications between
the cloud server and clients required for the model to reach a
target accuracy of 85%.

B. Experimental Results

Accuracy. Table I compares the performance of various
methods on the MIMIC-III dataset, focusing on five metrics.
FERRY achieves superior performance across all metrics,
with V&S at 91.75% and reaching the target accuracy in 34
communication rounds, demonstrating a 27.66% improvement

1In this paper, the number of hospitals participating in the model training
process is set to 8.

over its variant without joint loss learning (FERRY w/o JL).
FERRY’s performance is notable for its privacy-preserving
distributed approach, achieving similar results to centralized
methods like AVRIL while protecting patient data.

TABLE I
RESULTS OF DIFFERENT METHODS ON MIMIC-III.

Method V S V&S RA Improvement(%)

CNN 86.07% 51.3% 47.52% Not applicable

FQI 85% 58% 55% Not applicable

AVRIL 96.38% 96.71% 93.43% Not applicable

Fed-NFQI 71.89% 16.89% 14.38% Can’t reach Not applicable

FERRY w/o JL 96.21% 91.69% 89.16% 47 0

FERRY 96.76% 94.31% 91.75% 34 27.66

Impact of DRO. We evaluate the robustness of the final
trained model by evaluating its performance across different
hospitals, which exhibit varying data distributions. Our focus
is on the metric V&S, allowing us to assess the model’s
generalization and adaptability effectively. The results, il-
lustrated in Figure 4, compare the performance of FERRY,
FERRY without DRO, and Fed-NFQI on the hospital with the
worst data distributions under different noise environments.
FERRY consistently outperforms the other methods, with the
performance gap widening as the noise in training labels
increases. This highlights FERRY’s ability to better handle
noisy and heterogeneous data through its selective co-training
of the worse-performing hospital in each iteration of DRO,
ultimately enhancing robustness.
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Impact of joint loss learning. We further experiment to verify



the ability of FERRY to handle noisy data. We create synthetic
symmetric noisy labels2 and asymmetric noisy labels3 by
flipping the original labels. Figure 3 presents the accuracy
trends of FERRY and FERRY w/o JL under different noise
conditions4. (symmetric 20%, 40%, 50%, and asymmetric
20%) over 50 communication rounds. It shows that FERRY
consistently achieves higher accuracy and converges faster,
especially under higher noise levels. In contrast, FERRY w/o
JL struggles with much lower performance, particularly under
symmetric 50% noise, where it barely improves after a few
rounds. Table II complements this by providing the final
accuracy values for both methods. FERRY outperforms FERRY
w/o JL across all noise levels, with significant gains under
higher noise conditions, reaffirming the robustness of the joint
loss learning mechanism in handling noisy data.

TABLE II
THE TERMINAL ACCURACY OF FERRY & FERRY W/O JL UNDER

DIFFERENT NOISE LEVEL

Noise Level
Method

FERRY w/o JL FERRY

V(%) S(%) V&S(%) V(%) S(%) V&S(%)

Symmetric 20% 96.23 92.48 90.18 97.09 94.19 92.01

Symmetric 40% 90.75 85.53 83.3 96.47 93.05 90.82

Symmetric 50% 53.89 40.05 36.68 84.41 70.69 67.13

Aymmetric 20% 96.56% 92.59% 89.96% 96.83% 94.06% 91.83%

IV. CONCLUSIONS

In this paper, we introduce FERRY, a distributed medical
decision-making tool designed to provide timely therapeu-
tic recommendations based on patient data while addressing
critical issues such as privacy concerns, suboptimal reward
function design, and the detrimental effects of noisy data. We
evaluate FERRY using a real-world database and demonstrate
its effectiveness in facilitating intelligent management of ven-
tilation and sedation. Our results show that FERRY not only
outperforms traditional FL methods in terms of accuracy and
noise resilience but also achieves collaborative learning while
effectively safeguarding patient privacy.
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