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Abstract—Retrieval-augmented generation (RAG) enables
large language models (LLMs) to access external knowledge,
helping mitigate hallucinations and enhance domain-specific
expertise. Graph-based RAG enhances structural reasoning by
introducing explicit relational organization that enables infor-
mation propagation across semantically connected text units.
However, these methods typically rely on Euclidean embeddings
that capture semantic similarity but lack a geometric notion of
hierarchical depth, limiting their ability to represent abstrac-
tion relationships inherent in complex knowledge graphs. To
capture both fine-grained semantics and global hierarchy, we
propose HyperbolicRAG, a retrieval framework that integrates
hyperbolic geometry into graph-based RAG. HyperbolicRAG
introduces three key designs: (1) a depth-aware representation
learner that embeds nodes within a shared Poincaré manifold to
align semantic similarity with hierarchical containment, (2) an
unsupervised contrastive regularization that enforces geometric
consistency across abstraction levels, and (3) a mutual-ranking
fusion mechanism that jointly exploits retrieval signals from
Euclidean and hyperbolic spaces, emphasizing cross-space agree-
ment during inference. Extensive experiments across multiple
QA benchmarks demonstrate that HyperbolicRAG outperforms
competitive baselines, including both standard RAG and graph-
augmented baselines.

Index Terms—Retrieval-Augmented Generation (RAG), Hy-
perbolic Space, Hierarchical Modeling, Large Language Models
(LLMs).

I. INTRODUCTION

LARGE language models (LLMs) have demonstrated re-
markable capabilities across a wide range of natural lan-

guage processing tasks, including question answering, summa-
rization, dialogue generation, and personalization [1], [2], [3].
Despite their strong generalization ability, LLMs inevitably
suffer from knowledge staleness and hallucination, as their
internal parameters cannot be easily updated with newly
emerging facts or domain-specific information [4].

To mitigate these limitations, retrieval-augmented genera-
tion (RAG) [5] has emerged as a powerful paradigm that
equips LLMs with access to external knowledge bases. By
retrieving relevant documents at inference time and condition-
ing generation on this evidence, RAG systems can provide
more up-to-date and contextually grounded responses, thereby
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reducing reliance on outdated or incomplete parametric knowl-
edge. Building on this idea, graph-based RAG methods,
such as G-Retriever [6], GraphRAG [7], LightRAG [8], Hip-
poRAG [9] and HippoRAG2 [10], have organized the retrieved
or corpus-level documents into graph structures. In these
approaches, documents, entities, and concepts are represented
as interconnected nodes linked by semantic or relational edges,
enabling more structured access to knowledge. This paradigm
enables multi-hop evidence aggregation through explicit graph
traversal or message passing, thereby improving reasoning
over linked knowledge.

However, graph-based retrieval and reasoning methods typi-
cally embed nodes in flat Euclidean spaces, which are ill-suited
for representing the hierarchical dependencies that underlie
complex knowledge [11], [12]. Consider the query, “How
does long-term tension (chronic stress) lead to weakened
immunity?” A standard dense retriever1 usually returns pas-
sages about broad themes like “health” or “stress,” which are
superficially relevant yet too generic to reflect the underlying
mechanisms. This behavior arises from the hubness inherent
in high-dimensional Euclidean embedding spaces [14], [15]:
semantically broad concepts occupy central regions that lie
close to many queries, causing retrieval to disproportion-
ately favor high-frequency, generic nodes. Consequently, graph
traversal treats nodes as if they lie on a single semantic plane,
overlooking that “cortisol release” is a specific descendant of
“stress” along a causal and ontological hierarchy. In other
words, graph-based propagation can connect entities while
remaining largely insensitive to the hierarchical geometry that
structures complex domains.

To address these challenges, and inspired by findings
that human perception structures concepts in tree-like hier-
archies where general concepts subsume more specific sub-
concepts [16], we propose integrating hyperbolic geometry
into GraphRAG. Hyperbolic geometry naturally models such
structures by encoding semantic depth and containment with
minimal distortion [17], [18]: radial distance represents levels
of specificity, and the exponential expansion of hyperbolic
space accommodates large and deep hierarchies. As illustrated
in Fig. 1, in Euclidean space (top), general and specific
concepts co-locate on a flat surface, limiting the separation
of leaf-leaf nodes and blurring hierarchical boundaries. In
contrast, within hyperbolic space (bottom), general concepts
are positioned near the center, while specific facts are located

1Dense retrievers encode queries and documents into continuous vector
representations and retrieve results based on embedding similarity [13].
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Comparison of Euclidean vs. hyperbolic embedding effects on retrieval-augmented multi-hop reasoning. (a) In Euclidean space, 
embeddings primarily reflect surface-level semantic similarity. high-level concepts (e.g., stress) act as semantic hubs because their 
vectors approximate the mean of multiple subordinate contexts (e.g., acute stress, chronic stress). Linear distance metrics 
therefore make these hub nodes geometrically close to many queries, causing top-k activation to favor broad concepts and 
leading graph propagation (PPR) to spread over general subgraphs. The resulting answers tend to be superficial. (b) In hyperbolic 
space, hierarchical depth is encoded radially: general concepts concentrate near the center while fine-grained mechanistic facts 
align near the boundary. A mechanism-oriented query is mapped closer to boundary nodes (via depth alignment), which yields 
initial activation on specific mechanism nodes (e.g., chronic stress, cortisol release, lymphocyte). Subsequent propagation 
remains focused within the mechanism subbranch, producing more precise, causal answers.
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Fig. 1. Comparison of Euclidean and hyperbolic embedding effects on retrieval-augmented multi-hop reasoning. (a) In Euclidean space, embeddings reflect
surface-level similarity. General concepts (e.g., stress) act as semantic hubs, making top-k retrieval and graph propagation drift toward broad, generic subgraphs.
(b) In hyperbolic space, hierarchical depth is radially encoded: abstract nodes lie near the center, while specific facts align near the boundary. Queries are
thus aligned to relevant mechanism nodes (e.g., chronic stress, cortisol release), yielding more precise and causally focused reasoning.

toward the boundary. This arrangement exploits the expo-
nential growth property to preserve hierarchical containment
relations.

Building upon this geometric insight, we develop Hyperbol-
icRAG, a hierarchy-aware retrieval framework that integrates
hyperbolic geometry into graph-based RAG. HyperbolicRAG
introduces three key components. First, it predicts a semantic
depth for each textual unit and projects it into a shared
Poincaré manifold, where radial distance explicitly encodes
hierarchical specificity. Second, a bidirectional alignment loss
enforces consistent containment relations between passages
and fine-grained factual evidence. Third, at inference time,
HyperbolicRAG performs retrieval jointly in Euclidean and
hyperbolic spaces and fuses their rankings, thereby balancing
local semantic similarity with hierarchical relevance.

Our main contributions are summarized as follows:
• Hierarchy-aware hyperbolic Representation. We pro-

pose a hierarchy-aware retrieval framework that predicts
a scalar depth for each textual unit and performs depth-
controlled projection into a shared Poincaré manifold,
preserving local semantics while encoding hierarchical
structure via radial positions.

• Bidirectional containment alignment. We introduce a
bidirectional margin-based loss that aligns passages and
facts, enabling the model to internalize containment re-
lations across different granularities.

• Dual-space retrieval fusion. We develop a dual-space
retrieval mechanism that fuses Euclidean and hyperbolic
reasoning via mutual-ranking fusion, improving robust-
ness against noisy or overly generic evidence.

• Competitive results. Extensive experiments on multi-
ple QA benchmarks demonstrate that HyperbolicRAG

consistently outperforms standard RAG and graph-
augmented baselines, particularly on multi-hop reasoning
tasks.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on retrieval-augmented generation,
graph-based retrieval, and hyperbolic representation learning.
Section III summarizes the necessary background on hyper-
bolic geometry. Section IV details the proposed framework.
Section V presents experimental results and analysis. Finally,
Section VI concludes the paper.

II. RELATED WORK

A. Retrieval Augment Generation

RAG has emerged as a key paradigm to overcome the static
knowledge limitation of LLMs, decoupling parametric knowl-
edge stored in model weights from dynamic retrieval over
external corpora [5]. In its original form, RAG relies on dense
vector retrieval to fetch topically relevant passages, which
are then injected into the LLM context to ground generation.
Recent research has explored structured extensions of RAG,
with graph-based retrieval emerging as a prominent direction
[19], [20], [21]. GraphRAG methods organize textual units
into graphs, where edges encode semantic relationships such
as entity mentions or inter-entity associations. This structured
representation enables relevance propagation across connected
nodes, thereby enriching contextual grounding for downstream
LLM reasoning.

Despite sharing a common principle, existing GraphRAG
variants diverge substantially in their design focus. Hierar-
chical or community-based approaches, such as Microsoft
GraphRAG [7] and LazyGraphRAG [22], construct multi-level
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partitions of the corpus (e.g., chapter → section → subsection)
to support both local retrieval within communities and global
retrieval across them, thereby balancing retrieval precision and
corpus coverage. Another line of work centers on structure-
optimized designs. LightRAG [8] enriches retrieval by intro-
ducing graph-enhanced indexing that combines entity–relation
graph construction with key–value profiling, together with a
dual-level retrieval strategy to integrate entity-level accuracy
with topic-level breadth. GRAG [23] similarly focuses on
structural optimization but emphasizes robustness: it employs
soft pruning to suppress irrelevant nodes and incorporates
graph-aware prompt tuning to reduce retrieval noise. A third
direction explores task-adaptive frameworks. StructRAG [24]
dynamically incorporates multiple relation types (e.g., part-of,
causal) to better support complex reasoning demands, whereas
KAG [25] relies on human-curated schemas to construct high-
precision, domain-specific knowledge graphs that surpass fully
automated extraction pipelines in specialized settings. Yet,
these structured RAG variants ignore the underlying geometry
where the node representation relies on Euclidean embeddings
only, implying that even though nodes are connected relation-
ally, their spatial representation fails to encode hierarchical
containment. This geometric limitation motivates us to incor-
porate hyperbolic geometry into the retrieval process.

B. Hyperbolic Representation Learning

Hyperbolic geometry has become an effective paradigm
for modeling hierarchical data, addressing a key limitation of
Euclidean spaces: their difficulty in embedding tree-like or
nested structures with low distortion [17]. Early foundational
works such as Poincaré and Lorentz embeddings [26], [27]
and hyperbolic neural networks [28], [29], [30], [31], [32]
demonstrate that hyperbolic manifolds provide exponentially
expanding representational capacity that naturally aligns with
hierarchical and scale-free structures. Besides, hyperbolic ge-
ometry has also been applied with hyperbolic metric learn-
ing [33], [34], [35], [36], and graph learning, like Hyper-
IMBA [37], HVGNN [38], H2H-GCN [30], H2SeqRec [39].
These empirical advances align with theoretical results show-
ing that hyperbolic spaces enable low-distortion tree embed-
dings [17], exhibit favorable generalization behavior for hier-
archical data [40], and provide high representational efficiency
for complex structures [41].

Recent advances are pushing the frontier of hyperbolic
geometry into LLMs. Yang et al. [42] demonstrate that to-
ken embeddings exhibit inherent hyperbolicity and propose
a hyperbolic adaptation for LLMs that enhances downstream
reasoning performance. Desai et.al [43] introduce hyperbolic
geometry into image-text representation. He et al. [44] pro-
pose curvature-adaptive hyperbolic LLM architectures and
train hyperbolic LLMs from scratch. Despite these advances,
hyperbolic representation learning has rarely been applied to
RAG. Our work bridges this gap by integrating hyperbolic
geometry into RAG through explicit regularization and dual-
space retrieval.

III. PRELIMINARY

There are several isometric hyperbolic models [45], [46],
[47], including the Poincaré ball model, the Lorentz model,
Klein model, which show different characteristics but are
mathematically equivalent. In this work, we employ the
Poincaré ball model, which provides a conformal and an-
alytically convenient formulation of hyperbolic space. Its
closed-form geodesics and mappings integrate seamlessly with
Euclidean neural encoders, and its radial coordinate furnishes
an interpretable measure of hierarchical depth. These features
make the Poincaré model well-suited to our depth-controlled
projection mechanism and contribute to stable end-to-end
training. Although we instantiate our method in the Poincaré
ball, it is also compatible with other hyperbolic models.
The core geometric concepts of Poincaré ball used in our
framework are summarized below.

Poincaré Ball Model. The d-dimensional Poincaré ball
with negative curvature −c (c > 0) is defined as Hc

d =
{x ∈ Rd : c∥x∥2 < 1 }. It is a conformal model in
which angles are preserved and all points lie within a Eu-
clidean ball of radius 1/

√
c. The Riemannian metric is gx =

λ2xg
E , and λcx = 2

1−c∥x∥2 , where gE denotes the Euclidean
metric. The conformal factor grows rapidly near the boundary,
producing the characteristic expansion of hyperbolic space and
enabling compact representation of deeply nested hierarchical
structures.

Geodesic and Radial Distances. Distances in the Poincaré
ball follow the induced Riemannian geometry. For points
u,v ∈ Hc

d, the hyperbolic geodesic distance is

dcH(u,v) =
1√
c
arcosh

(
1 + 2c

∥u− v∥2

(1− c∥u∥2)(1− c∥v∥2)

)
.

(1)
This distance reflects both the Euclidean separation of the
points and their proximity to the boundary, which causes the
metric to expand and naturally induces hierarchical organi-
zation: points near the origin correspond to more general
concepts, whereas points near the boundary denote more
specific ones. The radial distance from the origin is

dcH(x,0) =
1√
c
arcosh

(
1 + 2c

∥x∥2

1− c∥x∥2

)
, (2)

which provides a direct geometric measure of hierarchical
depth in the embedding space.

Exponential and Logarithmic Maps. To couple hyperbolic
representations with Euclidean neural encoders, we use the
mappings between the tangent space at the origin and the
manifold. The tangent space provides a locally Euclidean
parameterization that allows standard neural operations to
interface with hyperbolic geometry.

The exponential map sends a tangent vector v ∈ T0Hc
d onto

the manifold:

expc0(v) = tanh
(√
c ∥v∥

) v√
c ∥v∥

. (3)

Its inverse, the logarithmic map, returns a point u ∈ Hc
d to

the tangent space:

logc0(u) =
1√
c
tanh−1

(√
c ∥u∥

) u

∥u∥
. (4)
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Fig. 2. Indexing pipeline. Given a document collection, the framework first performs chunking to obtain passages, from which an OpenIE extractor derives
relational triples and normalized entity mentions. Passages, entities, and facts are then encoded into dense vectors using a pretrained encoder. Finally, a
heterogeneous knowledge graph is constructed by linking (i) entity–entity pairs co-occurring in triples, (ii) passage–entity pairs grounded in text, and (iii)
synonymy links between semantically similar entities.

Together, these maps provide a smooth interface between
Euclidean and hyperbolic computations, enabling end-to-end
training while preserving the hierarchical structure encoded by
the manifold.

IV. METHODOLOGY

A. Overview

Our framework presents a dual-space retrieval framework
that seamlessly incorporates hierarchical structural knowledge
into RAG. The pipeline is organized into three complementary
stages: Indexing Process (illustrated in Fig. 2), Hierarchical
Enhancement (illustrated in Fig. 3) and Dual-space Retrieval
Process (illustrated in Fig. 4).

B. Indexing Process

The goal of the indexing phase is to transform the raw
corpus D = {D1, D2, . . . , DN} into a structured representa-
tion that supports semantic retrieval and hierarchical reasoning.
This is achieved by constructing a heterogeneous knowledge
graph G = (V, Eedge), where passages and entities constitute
the node set and their relationships are encoded through ex-
tracted factual and contextual connections. The overall process
consists of four sequential stages: (1) document chunking to
segment the corpus into coherent retrieval units, (2) relational
extraction to identify canonical entities and their interrelations,
(3) representation learning to obtain semantic embeddings
as node features, and (4) graph construction to define the
topological structure of G.

1) Document chunking: Each document Di is divided into
shorter, semantically coherent segments, referred to as pas-
sages. This segmentation balances retrieval granularity and
computational efficiency: passages should preserve sufficient
local context for meaningful retrieval while avoiding unneces-
sary redundancy. Formally, each document Di is decomposed
into passages Di → {pi,1, pi,2, . . . , pi,Mi

} with pi,j ∈ P ,
where pi,j denotes the j-th passage extracted from Di, Mi

is the number of passages derived from Di, and P denotes
the global set of all passages. Each passage later becomes a
textual node in G, serving as the retrieval unit to which entities
and relational evidence are anchored.

2) Relational extraction: To build a relationally grounded
view of the corpus, we employ a two-stage extraction pipeline
guided by an LLM. First, the model identifies salient entities
from each passage p ∈ P to establish the entity context.
Conditioned on these entities, it then extracts relational triples
that describe their interactions:

T (p) = {(es, r, eo) | es, eo ∈ Entities(p), r ∈ Relations(p)}.
(5)

Each extracted subject or object entity (es, eo) is incorporated
into the global entity set E if not already present, and every
triple (es, r, eo) is recorded as a fact f ∈ F . Facts are not
represented as graph nodes; instead, they act as relational an-
notations linking passages and canonical entities. Accordingly,
the node set of the graph is V = P ∪ E , where passages and
entities form the structural backbone of G, while facts enrich
their semantic connectivity.

3) Representation learning: After identifying the structural
elements, we encode their semantic content into dense vector
representations using a pretrained language model encoder,
denoted Enc(·). These embeddings serve as node features
and provide the semantic foundation for later hierarchy-aware
refinement. Specifically, we obtain three types of embeddings:

zEp = Enc(p), p ∈ P,
zEe = Enc(e), e ∈ E ,
zEf = Enc(f), f ∈ F . (6)

Passage embeddings zEp capture contextual semantics at the
text level; entity embeddings zEe encode concept-level meaning
aggregated across mentions; and fact embeddings zEf represent
relational semantics between entities. Importantly, these em-
beddings do not define the graph topology; rather, they serve
as semantic attributes that enable similarity computation and
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inform the subsequent hierarchy-aware embedding enhance-
ment.

4) Graph construction: The final step of indexing is to
establish edges Eedge in G to encode complementary structural
relationships between nodes. These edges are categorized
into three types, each designed to capture a specific type of
semantic connection:

• Entity–Entity edges: Each fact triple (s, r, o) (with s and
o normalized to canonical entities es, eo ∈ E) induces
an edge between es and eo. To quantify the strength of
this relationship, we increment the edge weight by the
co-occurrence frequency of es and eo across all facts.
Formally, the edge weight is updated as w(es, eo) ←
w(es, eo) + 1, where w(es, eo) denotes the weight of the
edge between es and eo. These edges capture local factual
relations (e.g., “lung cancer” causes−−−→ “chest pain”) and
support the propagation of evidence among semantically
related entities during retrieval.

• Passage–Entity edges: Each passage p ∈ P is connected
to all entities e ∈ Entities(p) (i.e., all entity mentions in
p after normalization). Formally, we add an edge (p, e) to
Eedge for every entity e ∈ Entities(p), i.e., (p, e) ∈ Eedge
for all e ∈ Entities(p). These edges anchor entities to
their original textual context and allow entity-level signals
(such as relevance scores of query-related entities) to
influence passage scoring, thereby enhancing the model’s
ability to capture context-aware connections.

• Synonymy edges: To address lexical variability (i.e., dif-
ferent surface forms of the same entity, such as ”U.S.” vs.
”United States” or ”COVID-19” vs. ”coronavirus disease
2019”), we connect entities whose embeddings exceed a
predefined cosine similarity threshold τsyn. Formally, we
add an edge (e, e′) to Eedge whenever cos(zEe , z

E
e′) ≥ τsyn,

where cos(·, ·) denotes cosine similarity and e, e′ ∈ E are
distinct entities. This construction strengthens connectiv-
ity among semantically equivalent entities expressed with
different surface forms and alleviates graph fragmentation
arising from lexical variation in heterogeneous graphs.

The resulting heterogeneous graph G = (V, Eedge), together
with the cached embeddings {zEp | p ∈ P}, {zEe | e ∈ E}, {zEf |
f ∈ F}, forms a compact yet expressive index, supporting
later hierarchy-aware projection and dual-space reasoning.

C. Hierarchical Enhancement

The heterogeneous graph constructed during indexing cap-
tures explicit relational connectivity but remains geometrically
flat. Euclidean embeddings encode local semantic similarity
but fail to capture how broad passages encompass fine-grained
facts. This flat geometry causes relevance propagation to drift
toward generic or high-degree nodes, leading to unstable
multi-hop reasoning and noisy retrieval.

We address this by refining node embeddings. Specifically,
Euclidean embeddings of passages, entities, and facts are
projected into a shared hyperbolic space Hc

d, whose nega-
tive curvature naturally models tree-like hierarchies. Radial
distance from the origin encodes hierarchical depth: general
passages are placed near the center, while specific facts are

pushed toward the boundary. A learned depth predictor assigns
each element a scalar specificity score that determines its
radial position. This hierarchy-aware embedding reshapes the
query–node similarity distribution, focusing propagation on
relevant, hierarchy-consistent subgraphs without modifying the
underlying topology.

The following sections describe (1) the hyperbolic projec-
tion mechanism and (2) unsupervised optimization that enforce
containment consistency between passages and facts.

1) Hyperbolic projection: Given Euclidean embeddings zEv
for passages, entities, and facts, we project them into the
hyperbolic space Hc

d to obtain hierarchy-aware representations
zHv . The projection process integrates semantic preservation
with hierarchical control and proceeds as follows.

a) Hierarchy feature extraction: While Euclidean em-
beddings zEv encode topical similarity, they lack cues that
distinguish hierarchical granularity. To capture such structure,
we firstly apply a nonlinear transformation ϕ : Ed → Ed′

,
yielding uv = ϕ(zEv ), where uv captures hierarchy-related
features.

b) Depth prediction: A type-specific predictor (ψpass,
ψfact, ψent) maps the hierarchical signal uv to a depth score
dv ∈ [0, 1] via dv = ψmode(v)(uv), where smaller scores
correspond to more general nodes and larger scores to more
specific ones. These depth values later determine the radial
placement of nodes in the hyperbolic space.

c) Feature fusion with gating: To jointly preserve se-
mantic and hierarchical information, we fuse zEv and uv via a
gating mechanism:

z̃Ev = ρ([zEv ∥uv]), (7)

mv = σ(Wgz̃
E
v), (8)

z∗v = mv ⊙ zEv + (1−mv)⊙ z̃Ev , (9)

where σ(·) is the element-wise sigmoid, Wg ∈ Ed×d is the
learnable weight matrix of the gating layer, and mv ∈ (0, 1)d
are per-dimension gates. The result z∗v ∈ Ed is the refined
Euclidean embedding used in the subsequent depth-alignment
step.

d) Radial depth alignment: To translate the predicted
depth dv into spatial structure, we regulate the L2 norm of the
refined embedding z∗v by enforcing ∥ẑEv∥ = α + βdv , where
α, β > 0 and α + β ≤ 1 to ensure all vectors remain inside
the Poincaré ball. The aligned embedding is then obtained by:

ẑEv =
α+ βdv
∥z∗v∥

z∗v. (10)

This step preserves semantic direction while encoding hierar-
chical depth as radial distance, where general nodes occupy
inner regions and specific ones are placed closer to the
boundary.

e) Mapping to hyperbolic space: The aligned Euclidean
vector ẑEv is then projected into the Poincaré ball Hc

d = {x ∈
Ed | ∥x∥ < 1} via the exponential map at the origin:

zHv = expc0(ẑ
E
v ). (11)

This mapping preserves the semantic direction of the Eu-
clidean embedding while converting its norm into a radius
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Fig. 3. Overview of the hierarchical enhancement process. Given Euclidean embeddings of passages, entities, and facts, the model first extracts a hierarchical
signal uv . This signal serves two roles: it is concatenated with the original semantic embedding zEv to form an enhanced Euclidean representation enriched
with hierarchical cues, and it is also used to predict a depth score dv that reflects the relative granularity of each node. The predicted depth then regulates
a radial rescaling of the enhanced embedding, assigning smaller norms to more generic concepts and larger norms to more fine-grained evidence. Finally,
the depth-aligned vectors are projected into the Poincaré ball via the exponential map, producing hyperbolic embeddings zHv that jointly encode semantic
similarity and hierarchical structure.

on the Poincaré ball. Such curvature-aware embedding offers
greater representational efficiency—capturing both local se-
mantic similarity and global hierarchy structure.

2) Unsupervised optimization: The hyperbolic projection
produces geometry-aware embeddings that encode hierarchical
depth, yet it does not explicitly constrain the spatial relation-
ships between passages and their contained facts. To enforce
such containment consistency, we introduce a pair of margin-
based contrastive objectives operating in both passage-to-fact
and fact-to-passage directions.

a) Passage-to-Fact alignment: For each passage p ∈ P ,
let F(p) denote the set of facts extracted from it. Each positive
pair (p, f+) is accompanied by a randomly sampled negative
fact f− not associated with p. We encourage p to be closer to
f+ than to f− in hyperbolic space by at least a margin γ:

Lp→f =
∑

f∈F(p)

[
dcH(z

H
p , z

H
f+)− dcH(zHp , zHf−) + γ

]
+
, (12)

where dcH(·, ·) denotes hyperbolic distance and [·]+ =
max(0, ·) ensures non-negative loss.

b) Fact-to-Passage alignment: Symmetrically, for each
fact f ∈ F , let P(f) denote its supporting passages. Each
positive pair (f, p+) is contrasted with a negative passage p−

not containing f , enforcing the reverse containment:

Lf→p =
∑

p∈P(f)

[
dcH(z

H
f , z

H
p+)− dcH(zHf , zHp−) + γ

]
+
. (13)

The dual alignment jointly optimizes hierarchical consis-
tency in both directions: passages act as semantic containers
that aggregate multiple fine-grained facts, while facts serve as
evidence grounding for passages. This bidirectional constraint
stabilizes the learned geometry and prevents degenerate align-
ment (e.g., all nodes collapsing toward the boundary).

D. Dual-space Retrieval Process

Building upon the retrieval framework of [10], we extend it
to a dual-space setting that jointly exploits the complementary
strengths of Euclidean and hyperbolic geometries. Specifically,
our retrieval module introduces two key enhancements: 1)
it performs independent relevance propagation in both the
Euclidean space, which excels at modeling local semantic
similarity and the Hyperbolic space which naturally preserves
hierarchical containment; 2) it integrates their results through
a mutual-ranking fusion strategy that emphasizes cross-space
consistency while preventing interference during propagation.

This dual-space design enables retrieval to simultaneously
benefit from fine-grained topical alignment and geometry-
aware reasoning over hierarchical relations. An overview of
the complete dual-space retrieval workflow is shown in Fig. 4

1) Euclidean branch (semantic similarity-based retrieval):
The Euclidean branch aims to model fine-grained semantic
similarity between the query and corpus elements. Its operation
proceeds in three stages.

a) Signal initialization: Given a query q, we encode it
into the Euclidean space using the same pretrained encoder
Enc(·) as in the indexing stage, obtaining the query embedding
zEq . Two complementary types of initial relevance signals are
derived:

• Fact-level signals. We compute cosine similarity between
zEq and cached fact embeddings zEf from the index. The
top-k most similar facts are selected as initial evidence.
Their scores are propagated to the corresponding subject
and object entities (es, eo) and normalized by each en-
tity’s number of associated passages to mitigate degree
bias.

• Passage-level signals. We directly compute cosine sim-
ilarity between zEq and passage embeddings zEp , forming
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Fig. 4. Illustration of the dual-space retrieval framework. The query is processed in parallel Euclidean and hyperbolic spaces. Each branch computes
query–fact similarities through different ways, propagates them to entities, and combines them with direct query–passage priors to form a seed distribution
for PPR on the passage–entity graph, yielding space-specific rankings (RE and RH). A mutual-ranking fusion then favors passages consistently ranked high
in both spaces, balancing Euclidean semantic similarity and hyperbolic hierarchical structure for robust retrieval.

passage-level priors that capture topical alignment.

b) Seed distribution construction: The signals are
merged into a unified seed distribution sEq , where each entry
corresponds to the initial relevance weight of a node in the
heterogeneous graph. This distribution serves as the restart
distribution for the Personalized Page Rank (PPR) [48]
process, ensuring propagation is centered on query-relevant
regions.

c) Graph propagation: We apply PPR over the pas-
sage–entity graph using sEq as the seed vector, computing
πE
q = αsEq + (1 − α)πE

qW , where W is the row-normalized
adjacency matrix and α ∈ (0, 1) is the restart probability
controlling the balance between local focus and global diffu-
sion. After convergence, the stationary distribution πE

q yields
passage-level relevance scores, which are sorted to form the
Euclidean ranking list RE.

2) Hyperbolic branch (hierarchy-aware retrieval): The hy-
perbolic branch follows the same computational structure as
the Euclidean branch, but performs operations in a non-
Euclidean manifold, thereby contributing complementary hi-
erarchical signals.

a) Query projection and signal initialization: The Eu-
clidean query embedding zEq is projected into the hyperbolic
space Hc

d via the trained projection module (Section IV-C),
producing zHq .

• Fact-level signals. We measure similarity as the negative
hyperbolic geodesic distance between zHq and cached
fact embeddings zHf , selecting the top-k closest facts as
initial evidence. Their scores are propagated to associated
entities (es, eo) and normalized by entity degree, identical
to the Euclidean branch.

• Passage-level signals. Similarly, negative hyperbolic dis-
tance between zHq and passage embeddings zHp pro-
vides hierarchy-aware passage priors, emphasizing fine-
to-coarse structural proximity.

b) Seed distribution and propagation.: The entity and
passage-level signals are merged into a hyperbolic seed distri-
bution sHq , which serves as the restart distribution for the PPR
process, yielding πH

q = αsHq + (1 − α)πH
q W , where W and

α are shared with the Euclidean branch to ensure consistent
propagation dynamics. After convergence, the stationary distri-
bution πH

q defines the hyperbolic relevance scores for passages,
producing the ranking list RH.

3) Mutual-ranking fusion (integrating complementary sig-
nals): To combine the Euclidean (RE) and hyperbolic (RH)
rankings, we employ a mutual-ranking fusion scheme that
emphasizes passages consistently favored by both spaces,
which mitigates noise from either single space and amplifies
robust signals. The fusion process has three key steps:

1) Reciprocal rank calculation. For each passage p, we
convert its rank in each list into a reciprocal-rank score,
sE(p) = 1/(rankE(p) + 1) and sH(p) = 1/(rankH(p) +
1), where rankE(p) and rankH(p) denote the rank of p
in RE and RH, respectively.

2) Consistency bonus calculation. We assign an additional
bonus b(p) to passages that appear in both rankings, re-
warding cross-space consistency. The bonus is computed
as b(p) = 1/(rankE(p) + rankH(p) + 2), which gives
higher values to passages that simultaneously achieve
strong ranks in both lists.

3) Hybrid score computation. The final hybrid score for
each passage p is computed as shyb(p) =

(
sE(p) +

sH(p)
)
(1 + b(p)), and passages are subsequently re-

ranked in descending order of shyb(p) to obtain the final
retrieval result.

This late-fusion design ensures that Euclidean and hyperbolic
retrieval remain independent during graph propagation, while
the mutual-ranking scheme explicitly leverages cross-space
consistency to enhance retrieval robustness and precision.
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TABLE I
SUMMARY OF DATASET INFORMATION, EXTRACTION RESULTS, AND GRAPH STATISTICS.

NQ PopQA MuSiQue 2Wiki HotpotQA

Basic Dataset Statistic
Number of Queries 1,000 1,000 1,000 1,000 1,000
Number of Passages 9,633 8,676 11,656 6,119 9,811

Information Extraction Statistic
Number of Facts 115,243 112,990 140,739 68,840 129,997

Number of Entities 62,234 72,050 85,274 44,003 81,200

Knowledge Graph Statistic
Number of Nodes 71,867 80,726 96,944 50,123 91,011
Number of Edges 990,057 954,528 1,399,262 726,330 1,246,677

V. EVALUATION

A. Datasets

To evaluate the effectiveness of our dual-space retrieval
framework in supporting multi-hop reasoning, we follow exist-
ing work [10] categorizing datasets into two challenge types:

1) Simple QA. This category primarily evaluates the ability
to recall and retrieve factual knowledge accurately. We
randomly select 1,000 queries from Natural Questions
(NQ) [49], which contains real user questions covering
diverse topics. Additionally, we select 1,000 queries
from PopQA [50], derived from the December 2021
Wikipedia dump. Both datasets provide straightforward
QA pairs suitable for assessing single-hop retrieval per-
formance. Notably, PopQA is more entity-centric, with
entities occurring less frequently than in NQ, making it
particularly useful for evaluating entity recognition and
retrieval in simple QA tasks.

2) Multi-hop QA. Multi-hop datasets require the model
to connect multiple pieces of information to answer
a query, testing associative reasoning capabilities. We
sample 1,000 queries from MuSiQue [51], 2WikiMulti-
hopQA [52], and HotpotQA [53], following the setup
in HippoRAG [10]. For all multi-hop datasets, long-
form contexts are segmented into shorter passages while
maintaining the same RAG setup, allowing our retrieval
framework to aggregate evidence across multiple pas-
sages.

The statistics of the sampled datasets are summarized in
Table I. Together, these datasets provide a comprehensive
evaluation of retrieval models on factual memory, multi-hop
reasoning, and discourse-level comprehension.

B. Baselines

We evaluate our framework against three categories of
baselines:

1) Simple retrieval methods. BM25 [54]: A classical
lexical matching baseline. Contriever [55] and GTR
[56]: Popular dense embedding retrievers that rely solely
on Euclidean semantic similarity.

2) Large pre-trained embedding models. These base-
lines use state-of-the-art 7B-scale embedding models
that achieve strong performance on the BEIR bench-
mark [57]: Alibaba-NLP/GTE-Qwen2-7B-Instruct [58],

GritLM/GritLM-7B [59], nvidia/NV-Embed-v2 [60].
They provide strong semantic representations and serve
as a competitive reference for dense retrieval perfor-
mance.

3) Structure-augmented RAG. These methods leverage
graph or hierarchical structures to improve multi-hop
reasoning: RAPTOR [61]: Organizes the corpus hier-
archically based on semantic similarity. GraphRAG [7]
and LightRAG [8]: Use knowledge graphs to prop-
agate relevance and summarize high-level concepts.
HippoRAG [9]: Integrates graph-based knowledge us-
ing PPR rather than summarization. HippoRAG2 [10]:
An improved variant of HippoRAG that refines both
graph-based retrieval and memory aggregation, yielding
stronger performance on multi-hop QA benchmarks.

C. Metrics

We adopt two complementary sets of metrics to evaluate
retrieval and downstream QA performance.

• Retrieval evaluation. Following HippoRAG (Gutiérrez
et al., 2024), we report Passage Recall@5, which mea-
sures whether the gold evidence passages appear among
the top-5 retrieved candidates.

• QA evaluation. For end-to-end question answering, we
adopt the token-level evaluation protocol introduced in
MuSiQue [51]. We report both the Exact Match (EM)
and F1 scores between the predicted answer span and
the ground-truth answer. EM measures the exact string
match accuracy, while F1 balances precision and recall
by capturing the overlap of tokens between prediction and
reference.

Together, these metrics provide a comprehensive view: re-
trieval recall emphasizes evidence coverage, while EM and
F1 measures final answer quality.

D. Implementation Details

We follow the experimental setup of HippoRAG2 [10]
to ensure fair comparison. Specifically, we use Llama-3.3-
70B-Instruct [62] as the extraction model for both NER and
OpenIE, and as the triple filtering model. For retrieval, we
adopt NV-Embed-v2 [60] as the embedding model. For QA
generation, we report the results of feeding the top-5 retrieved
passages as context to an LLM (i.e., Llama-3.3-70B-Instruct).
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TABLE II
COMPARISON OF RETRIEVAL METHODS IN TERMS OF RECALL@5 (%) ACROSS SIMPLE QA AND MULTI-HOP QA DATASETS.

Simple QA Multi-Hop QA
Retrieval Methods NQ PopQA MuSiQue 2Wiki HotpotQA Avg

Simple Baselines
BM25 56.1 35.7 43.5 65.3 74.8 55.1

Contriever 54.6 43.2 46.6 57.5 75.3 55.4
GTR (T5-base) 63.4 49.4 49.1 67.9 73.9 60.7

Large Embedding Models
GTE-Qwen2-7B-Instruct 74.3 50.6 63.6 74.8 89.1 70.5

GritLM-7B 76.6 50.1 65.9 76.0 92.4 72.2
NV-Embed-v2-7B 75.4 51.0 69.7 76.5 94.5 73.4

Structure-Augmented RAG
RAPTOR 68.3 48.7 57.8 66.2 86.9 65.6

HippoRAG 44.4 53.8 53.2 90.4 77.3 63.8
HippoRAG2 78.0 51.7 74.7 90.4 96.2 78.2

HyperbolicRAG 78.5 51.9 76.2 92.1 96.3 79.0

All hyperparameters (e.g., damping factor in PPR, retrieval
cutoffs) follow the default values from HippoRAG2 unless
otherwise stated.

E. Experimental Results

We evaluate HyperbolicRAG through a comprehensive set
of experiments to assess its retrieval effectiveness, end-to-end
QA performance, component-wise contributions, and model-
agnostic robustness. Across all results, our method is high-
lighted in gray , the best result is marked in bold, and the
second-best result is underlined.

1) Information Extraction Results and Graph Statistics:
Before evaluating retrieval performance, we first report the
information extraction and graph construction results from
the indexing stage. Each passage is converted into structured
fact triples using Llama-3.3-70B-Instruct, forming the factual
backbone of the heterogeneous passage–entity graph. Based
on these facts and entities, we construct the passage–entity
knowledge graphs, where passages and entities serve as nodes
and edges represent factual or co-occurrence relations. The
overall extraction results and graph statistics are summarized
in Table I.

2) Retrieval Results: We evaluate retrieval performance
using Recall@5. Table II reports the results on both simple and
multi-hop QA datasets. HyperbolicRAG achieves the highest
overall Recall@5 of 79.0%, outperforming all Euclidean and
structure-augmented baselines. Compared with the strongest
Euclidean retriever, NV-Embed-v2-7B (73.4%), it delivers
a 5.6% absolute improvement, demonstrating the advantage
of modeling hierarchical organization beyond surface-level
similarity. Within structure-augmented methods, Hyperboli-
cRAG slightly outperforms HippoRAG2 (78.2%), indicating
that hyperbolic geometry provides complementary benefits
even for advanced graph-based retrieval frameworks. The
gains are most evident on multi-hop datasets such as 2Wiki
(92.1% vs. 90.4%) and MuSiQue (76.2% vs. 74.7%), where
reasoning requires integrating multiple entities and relations.
On simpler datasets such as NQ and PopQA, improvements are

smaller, confirming that the hyperbolic formulation enhances
robustness without overfitting to specific structural patterns.
Overall, these findings demonstrate that explicitly modeling
relational hierarchies in hyperbolic space mitigates the hubness
bias inherent in Euclidean embeddings and leads to more
precise and context-aware retrieval.

3) Generation Results: Beyond retrieval effectiveness, we
further evaluate end-to-end QA performance using EM and
token-level F1 on answers generated from the top five retrieved
passages. Table III summarizes the results. HyperbolicRAG
achieves the highest overall performance, with an average of
51.4% EM and 63.3% F1, outperforming both Euclidean and
structure-augmented baselines. Compared with the strongest
competitors, HippoRAG2 (51.0% / 62.7%) and NV-Embed-v2-
7B (49.0% / 60.0%), HyperbolicRAG demonstrates consistent
gains across all datasets. The improvement is particularly
pronounced on multi-hop QA benchmarks such as MuSiQue
(39.5% / 50.6%) and 2Wiki (65.5% / 72.3%), where reasoning
requires integrating multiple entities and factual relations. In
these tasks, hyperbolic representations capture more coherent
and hierarchically consistent evidence, enabling the generator
to produce more complete and faithful answers. On simpler
datasets such as NQ and PopQA, the model maintains com-
petitive results (47.8% / 62.3% and 42.4% / 56.3%), indi-
cating that curvature-based modeling preserves generalization
on non-compositional queries. Overall, these findings show
that HyperbolicRAG provides the LLM with more precise
and semantically grounded evidence, leading to higher factual
consistency and completeness in generated responses.

4) Ablation Results: To examine the contribution of each
component in HyperbolicRAG, we conduct ablation studies
on three representative multi-hop QA datasets, as shown in
Table IV. The first variant, Euclidean Embedding Alignment,
replaces the hyperbolic manifold with a flat Euclidean space
while retaining the same contrastive learning objective. Al-
though the pull–push optimization encourages hierarchical
alignment, its performance (71.4% on MuSiQue, 88.4% on
2Wiki, and 94.8% on HotpotQA) falls short. This degradation
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TABLE III
EM AND F1 (%) PERFORMANCE COMPARISON OF RETRIEVAL METHODS USING THE TOP-5 RETRIEVED PASSAGES.

Simple QA Multi-Hop QA
Retrieval Methods NQ PopQA MuSiQue 2Wiki HotpotQA Avg

Simple Baselines
None 40.2/54.9 28.2/32.5 17.6/26.1 36.5/42.8 37.0/47.3 31.9/40.7
BM25 45.0/58.9 41.6/53.1 24.0/31.3 38.1/41.9 51.3/62.3 40.0/49.5

Contriever 44.7/59.0 39.1/49.9 20.3/28.8 47.9/51.2 52.0/63.4 40.8/50.5
GTR (T5-base) 45.5/59.9 43.2/56.2 25.8/34.6 49.2/52.8 50.6/62.8 42.8/53.3

Large Embedding Models
GTE-Qwen2-7B-Instruct 46.6/62.0 43.5/56.3 30.6/40.9 55.1/60.0 58.6/71.0 46.9/58.0

GritLM-7B 46.8/61.3 42.8/55.8 33.6/44.8 55.8/60.6 60.7/73.3 47.9/59.2
NV-Embed-v2-7B 47.3/61.9 42.9/55.7 34.7/45.7 57.5/61.5 62.8/75.3 49.0/60.0

Structure-Augmented RAG
RAPTOR 36.9/50.7 43.1/56.2 20.7/28.9 47.3/52.1 56.8/69.5 40.9/51.5

GraphRAG 30.8/46.9 31.4/48.1 27.3/38.5 51.4/58.6 55.2/68.6 39.2/52.1
LightRAG 8.6/16.6 2.1/2.4 0.5/1.6 9.4/11.6 2.0/2.4 4.5/6.9
HippoRAG 43.0/55.3 42.7/55.9 26.2/35.1 65.0/71.8 52.6/63.5 45.9/56.3
HippoRAG2 47.1/62.0 42.9/56.2 37.2/48.6 65.0/71.0 62.7/75.5 51.0/62.7

HyperbolicRAG 47.8/62.3 42.4/56.3 39.5/50.6 65.5/72.3 61.7/75.2 51.4/63.3

TABLE IV
ABLATION STUDY ON MULTI-HOP QA DATASETS (RECALL@5).

Multi-Hop QA Dataset
Retrieval Methods Musique 2Wiki HotpotQA

Euclidean Alignment 71.4 88.4 94.8

HyperbolicRAG w/o Hyperbolic Signal 74.7 90.4 96.2

HyperbolicRAG w/o Euclidean Signal 73.9 90.4 95.9

HyperbolicRAG 76.2 91.1 96.3

reflects an inherent limitation of Euclidean space, whose
isotropic geometry captures pairwise similarity but fails to
express asymmetric containment among passages, entities, and
facts. Consequently, hierarchical signals are compressed into
a single representational layer, reducing the model’s ability to
distinguish between abstract and specific evidence.

The second and third variants assess the impact of the
dual-space fusion mechanism by disabling one of the rank-
ing channels. Without hyperbolic ranking signal, the model
relies purely on Euclidean similarity (74.7% on MuSiQue and
90.4% on 2Wiki); conversely, removing the Euclidean ranking
yields a comparable decline (73.9% and 90.4%). These results
suggest that the two spaces capture complementary aspects of
relevance: the Euclidean space refines local semantic consis-
tency, whereas the hyperbolic space preserves global structural
hierarchy. The complete HyperbolicRAG achieves the best
overall performance (76.2%, 91.1%, and 96.3%), confirming
that the proposed rank-level fusion combines hyperbolic and
Euclidean signals to deliver semantically precise and struc-
turally coherent retrieval.

5) Model-Agnostic Effectiveness: We assess the compati-
bility of HyperbolicRAG with a broad set of dense encoders
and LLM backbones. As shown in Fig. 5(a), integrating
our hierarchical enhancement mechanism with various dense
retrievers, including GTE Qwen2 7B Instruct, GritLM 7B, NV
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Fig. 5. Comparison of HyperbolicRAG under (a) different embedding
encoders and (b) generative backbones.

Embed v2 (7B), and Qwen3 Embedding 8B [63], consistently
yields higher Passage Recall@5 compared with their Eu-
clidean counterparts. These results indicate that the hyperbolic
representation reliably preserves hierarchical semantics across
diverse embedding distributions.

In addition to retrieval encoders, Fig. 5(b) demonstrates
that HyperbolicRAG provides stable performance gains when
paired with different LLM backbones. Although Llama3 70B
serves as our primary generator, comparable improvements
are observed with QWQ 32B [64], which confirms that the
advantages of hierarchical enhancement generalize across ar-
chitectures of different capacities. We also find that the overall
retrieval quality is influenced by the accuracy of the relational
graph construction pipeline. Inaccurate or incomplete extrac-
tion of entities and relations may introduce noise and fragmen-
tation, which in turn limits the achievable performance. De-
spite these constraints, HyperbolicRAG consistently enhances
retrieval robustness and hierarchical sensitivity across both
retriever and backbone variations.

6) Effect of the Curvature Hyperparameter: To assess the
sensitivity of the model to geometric settings, we vary the
curvature hyperparameter c. As illustrated in Fig. 6, c has
minimal influence on retrieval performance, while a moder-
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performance.

ate curvature leads to slight but consistent improvements in
generation metrics. This suggests that the model is robust
to curvature variations and benefits marginally from non-
Euclidean geometry.

VI. CONCLUSION

In this work, we propose HyperbolicRAG, a hierarchy-
aware retrieval framework that captures the intrinsic structure
of entity–fact–passage relations through hyperbolic geometry.
By modeling hierarchical containment within a curved space,
HyperbolicRAG effectively alleviates the hubness bias inher-
ent in Euclidean embeddings and improves the precision of
evidence retrieval. A dual-space retrieval mechanism further
integrates Euclidean and hyperbolic reasoning, combining
fine-grained semantic similarity with global structural aware-
ness. Extensive experiments across multiple QA benchmarks
demonstrate consistent gains in both retrieval and answer
generation, particularly on multi-hop reasoning tasks.
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